
Hybrid Neural-Network--Genetic 
Algorithm Technique for Aircraft Engine 
Performance Diagnostics Developed and 
Demonstrated
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method 
that employs neural networks and genetic algorithms for aircraft engine performance 
diagnostics has been developed and demonstrated at the NASA Glenn Research Center 
against a nonlinear gas turbine engine model. Neural networks are applied to estimate the 
internal health condition of the engine, and genetic algorithms are used for sensor fault 
detection, isolation, and quantification. This hybrid architecture combines the excellent 
nonlinear estimation capabilities of neural networks with the capability to rank the 
likelihood of various faults given a specific sensor suite signature. The method requires a 
significantly smaller data training set than a neural network approach alone does, and it 
performs the combined engine health monitoring objectives of performance diagnostics 
and sensor fault detection and isolation in the presence of nominal and degraded engine 
health conditions. 

Aircraft engine performance is diagnosed by estimating a set of internal engine health 
parameters from available sensor measurements. The following relationship between the 
engine health parameters and the sensed parameters can be used to express the general 
approach: 

y = f(p, operating condition) + w 

where y is a vector representing the sensed parameters (gas path temperatures and 
pressures, spool speeds, fuel flow, and variable geometry), p is a vector of engine health 
parameters (component efficiencies and flow capacities), f(·) is a nonlinear function of p 
and the engine operating condition, and w is a vector representing measurement 
inaccuracies. System nonlinearities and potential sensor measurement inaccuracies make 
this estimation problem very challenging. 



Hybrid engine health estimation architecture. 
Long description: Block diagram of the hybrid neural network genetic algorithm 

architecture for aircraft engine performance diagnostics. The engine in this diagram has 
measurable output data that are a function of the amount of engine degradation and the 
current engine operating conditions, such as altitude, Mach number, and power lever 
angle. The measured, or sensed, engine output data are corrupted by sensor noise and 
sensor bias. These sensed data are passed into the hybrid estimator block. The hybrid 

estimator processes them, and produces output data of engine health parameter estimates, 
uncorrupted engine sensor value estimates, and engine sensor bias estimates. The hybrid 

estimator block consists of the following subblocks: a bias data set, a neural network 
estimator, an engine model, and a genetic algorithm that coordinates the estimation 

process. The genetic algorithm drives the search to choose candidate sensor bias vectors 
from the bias data set. The selected bias vectors are subtracted from the sensed engine 

parameter vector, and the difference is sent into the neural network estimator to estimate 
engine health parameters. These estimated engine health parameters are provided as input 
to the engine model that produces the estimated engine output data. The genetic algorithm 
compares engine model output data to measured engine output data to assess the fitness 

of the candidate solution. At the conclusion of the search process, the highest fitness 
solutions are output from the hybrid estimator.

The hybrid engine health estimation architecture, as shown in the figure, is composed of a 
bias data set, a neural network estimator, an engine model, and the genetic algorithm 
optimization technique. Engine output data are based on the current operating condition 
and engine health parameters. These sensed parameters are corrupted by a white noise 



vector v and a bias vector b. To make the problem manageable, we assumed that at most 
one sensor could be biased at a time. The bias data set, which is composed of a large 
number of bias vectors, is defined a priori and is used by the genetic algorithms in the 

search for a bias vector that matches well with an actual bias contained in the 
measurement vector. The neural network estimator is trained offline with noise-corrupted, 

but bias-free, sensor measurements to estimate engine health parameters . The neural 
network will perform sufficiently well in estimating health parameters as long as the sensor 
measurements do not contain any bias. For a given set of estimated health parameters and 
sensor bias, the engine model is executed and its output data are evaluated against the 
physical sensor measurements. The bias data set, the neural network estimator, and the 
engine model are coordinated by the genetic algorithms in the search for an optimal 
solution. After the search process, the searched bias vectors are ranked according to their 
corresponding fitness value, which is a value indicating the agreement between the 
measured and predicted engine output parameters. A ranked list of several plausible fault 
candidates can help to avoid false alarms or missed detections. 

The table shows an example of the technique's estimation performance applied to a 
military twin-spool turbofan engine simulation, which was used to represent both the 
engine and the engine model shown in the figure. Here, 12 sensed engine values were used 
to estimate the 9 engine health parameters listed in the table. In this case, a 9.5s bias was 
modeled in the sensed fuel flow value. Without bias detection, the estimation errors of 
some engine health parameters are higher than 20 percent, and one is as high as 120 
percent. With bias detection, the estimator is able to correctly identify and quantify the 
bias in the fuel flow. This results in greatly improved health parameter estimation accuracy 
with all estimation errors at 15 percent or less. 
HEALTH PARAMETER ESTIMATION WITH AND WITHOUT BIAS DETECTION

[9.5σ bias in fuel flow.]
Health parameter Actual

condition,
percent

With bias detection Without bias 
detection

Estimated
condition,

percent

Error,
percent

Estimated
condition,

percent

Error,
percent

Fan efficiency -2.900 -2.788 -3.876 -2.950 1.722
Fan flow -1.800 -1.811 0.596 -1.819 1.076
Booster flow 0 0 ------- -0.134 -------
High-pressure compressor 
efficiency

-2.300 -2.172 -5.578 -2.305 0.234

High-pressure compressor flow -1.900 -2.027 6.658 -1.497 -21.213
High-pressure turbine efficiency -1.400 -1.614 15.254 -1.715 22.516
High-pressure turbine flow 1.000 0.875 -12.484 2.201 120.045
Low-pressure turbine efficiency -2.000 -2.197 9.857 -2.303 15.146
Low-pressure turbine flow 2.100 2.083 -0.819 2.393 13.942
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